
	 	 	

How	to	build,	implement	and	leverage	a	
successful	data	architecture	using	data	mesh	
architecture	pattern	–	A	view	from	BCG	and	
Teradata	Corporation.	

Authors:	

Robbert	Naastepad	
(Teradata)	

Jakub	Fila		
(BCG	Platinion)	

Jens	Mueller		
(BCG	Platinion)	

Vincent	von	Hof	(BCG	
Platinion)	

Table	of	Contents	
1. Data Mesh – a new approach building on existing technology foundations 3

1.1 Principles of data mesh .. 3

1.1.1 Domain orientation .. 3

1.1.2 Data as a product ... 4

1.1.3 Self-service ... 4

1.1.4 Federated governance ... 4

1.1.5 Agility ... 4

1.2 Architectural concepts that support data mesh .. 5

1.2.1 Domain Driven Design .. 5

1.2.2 Microservice Architecture .. 5

1.2.3 API driven integration .. 5

1.2.4 Resource oriented architecture ... 6

2. Data Mesh vs Data Warehouse vs Data Lake ... 6

3. Ways of organizing and sourcing distributed data mesh ... 8

3.1 Ways of organizing schemas for the distributed data mesh .. 8

3.2 Ways of sourcing/building the data mesh ... 9

3.3 Fully independent model ... 9

3.4 Sourcing from the central store with materialization of the domain 11

3.5 Sourcing from the central store with virtualization of the domain 11

4. How to organize the service landscape to implement data mesh ... 12

4.1 General organization of architecture layers for data mesh ... 12

4.2 Types of APIs used for data mesh .. 14

5. Ways of building data mesh are dependent on the scale and resources in hand 15

6. Dos and don’ts – when (not) to implement data mesh architecture (Decease – too long) 17

7. Teradata as a provider of core technology to enable data mesh architecture 17

8. Outlook for the future ... 19

8.1 Technology ... 19

8.1.1 Data Mesh and Service Mesh will converge .. 19

8.1.2 Middleware will support data mesh .. 19

8.1.3 Data Mesh platforms as a service .. 19

8.1.4 Data virtualization as enabler for data mesh ... 20

8.1.5 Domain Driven Design sophistication .. 20

8.1.6 AI/ML will get embedded into Data Mesh ... 20

8.2 Organization and operations ... 20

9. Conclusions .. 20

10. About the authors .. 22

	

1. Data	Mesh—a	new	approach	building	on	existing	technology	foundations	

Data	mesh	is	a	frequently	discussed	topic	as	it	is	perceived	as	game	changer	in	data	
architectures.	However,	it	is	often	misunderstood	as	a	concept	as	well	as	are	its	consequences.	

What	is	data	mesh	then?	It	is	a	shift	in	architectural	and	business	usage	paradigm	that	reorients	
data	architecture	towards	business	specific	to	a	company.	

It	is,	however,	no	remedy	for	every	issue;	nor	a	silver	bullet	to	solve	any	fundamental	data	
problem.	Let’s	start	the	article	with	an	honest	view	into	what	Data	Mesh	really	is	as	well	as	what	
it	is	not.	

Data	mesh	IS:	A	way	of	client-centric	organization	of	data	and	data	interfaces	for	efficient	and	
business	aligned	consumption	and	monetization	of	the	data.	It	serves	business	domains	with	
relevant,	timely	and	high-quality	data	views/perspectives	exposed	as	business	understood	data	
products/services.	It	shifts	the	paradigm	of	designing	data	architecture	to	business	derived	and	
business	oriented.	It	is	also	a	way	of	decomposing	a	highly	entangled/coupled	monolithic	data	
architecture	into	a	domain-oriented	architecture,	delivering	on	the	premise	of	so	called	self-
service.	Decentralization	and	federated	governance	are	concepts	at	the	center	of	this	
architectural	style	enabling	its	usability	and	adaptability.	

Data	mesh	IS	NOT:	A	replacement	for	data	warehouse,	data	lake	or	lake	house.	It	is	not	a	
replacement	for	properly	designed	data	integration	nor	is	it	a	remedy	for	poor	data	
management	at	back-end/core	systems.	It	is	not	a	magic	key	to	self-organize	the	data	in	the	
organization	that	has	no	proper	data	organization	and	lineage	between	its	systems	and	
repositories.	

Data	mesh	SHOULD	NOT:	Be	confused	with	Data	Fabric.	Although	both	are	data	management	
architectures,	a	data	mesh	produces	data	products	specific	to	(business)domains.	A	data	fabric	
produces	many	data	artifacts	of	which	a	data	product	can	be	one.	Where	a	data	fabric	is	a	more	
technical	focused	architecture,	data	mesh	tends	to	lean	more	towards	the	organization	of	data	
management	and	is	an	information	architecture.	The	data	fabric	center	is	metadata,	that	of	a	
data	mesh	is	the	domain.	

1.1 Principles	of	data	mesh	

In	a	canonical	design	of	data	mesh,	five	principles	need	to	be	highlighted:	

• Domain	orientation	
• Data	as	a	product	
• Self-service	
• Federated	governance	
• Agility	
• Each	of	those	plays	a	vital	role	in	building	a	value	of	data	mesh	solution	as	data	mesh	is	more	
a	business	philosophy	than	pure	technical	concept.	

1.1.1 Domain	orientation	

Data	are	organized	across	domains	with	clear	domain	ownership	spanning	from	operational	
sources,	via	[optional]	centralized	data	to	dispositive	data	consumption.	The	examples	might	be	
party/client/partner	domain	or	deposits	domain	in	the	banking	area.	Each	defines	its	main	

business	objects,	data	describing	them	and	ways	the	data	are	served	also	engaging	direct	
owners	into	the	process	of	definition	of	the	domain.	

1.1.2 Data	as	a	product	

Data	cataloguing	should	allow	discovery	of	the	data	by	their	consumers	and	stakeholders.	APIs	
that	operate	on	self-service	premise	ensure	interoperability	of	the	data	products.	Declaration	of	
data	quality	is	done	in	data	delivery	agreements.	Data	products	are	simply	a	concept	and	
implementation	of	data	entities	and	services	enabling	them.	They	typically	form	a	group	of	
business	meaningful	data	objects	being	served	and	operated.	As	an	example,	product:	Contracts	
in	the	service	provider	company	would	enable	all	the	business	relevant	information	on	the	
contractual	agreements	with	company’s	clients	thus	allowing	insight	into	the	data	as	well	as	
potentially	manipulating	the	data.	The	products	can	be	built	as	raw	business	semantics	on	the	
data	or	built	upon	other,	more	fundamental	products.	

The	products	are	typically	delivered	and	developed	further	using	agile	approach	with	data	
ownership	and	product	team	established	for	each	of	them.	

1.1.3 Self-service	

Data-product	teams	typically	spin	up	technical	components	needed	to	extract,	load,	transform,	
store,	publish	and	expose	the	data.	The	data	are	accessible	by	means	of	data/service	contracts	
and	the	services	providing	them	operate	at	scale.	Data	consumers	only	need	to	know	the	
contract	and	endpoint	to	be	able	to	establish	the	client.	

In	existing	data	architectures,	technical	components	are	often	set	in	stone	and	managed	by	a	
centralized	team.	The	interaction	with	that	team	is	a	quintessential	requirement.	Data	owners	
must	await	their	support	before	they	can	proceed.	In	self-service	architectures	the	data	owners	
can	shape	the	products	themselves	deciding	on	how	the	data	are	served	and	consumed.	

1.1.4 Federated	governance	

The	data	are	harmonized	in	centralized	fashion	using	data	catalogues,	metadata	management	
solutions	for	common	discovery,	consumption	and	interoperability.	Data-product	teams	have	
significant	freedom	(not	breaking	central	principles	though)	to	build	data	assets	allocated	in	
domains	in	the	most	efficient	way	matched	to	the	specificity	of	the	domain.	Computational	
governance	is	in	place	to	enforce	the	data	delivery	agreements.		

1.1.5 Agility	

Canonical	agile	methodology	and	organization	combined	with	a	set	of	data-specific	capabilities	
provide	a	tooling	for	data	mesh	build.	DataOps	provides	a	framework	for	dev-test-deploy	of	
various	data	assets	in	automated	and	scalable	way.	Obviously	agile	methodologies	proved	to	be	
useful	for	other,	older	styles,	however	data	mesh	directly	benefits	from	it	as	self-service	and	
domain	orientation	are	best	aligned	with	them.	

	

	 	

1.2 Architectural	concepts	that	support	data	mesh	

Data	Mesh	as	a	concept	is	fresh,	but	elements	of	the	idea	have	existed	long	before	and	so	has	the	
tooling.	It	is	the	assembly	of	the	concepts	that	reorient	data	architecture	towards	business	
services	and	support	business	domains	in	the	most	relevant	way.	The	applicable	concepts	to	be	
explained	in	the	later	part	of	the	article:	

• Domain-driven	design	
• Microservice	architecture	
• API	driven	integration	
• Resource-oriented	architecture	

1.2.1 Domain-driven	design	

Software	design	consultant	and	author	Eric	Evans	defines	domain	driven	design	as	the	most	
fundamental	underlying	paradigm	that		supports	modelling	and	implementation	of	business	
services	grouped	by	specific	business	areas	(called	domains).	For	the	data	mesh,	the	notion	of	a	
data	domain	is	very	often	used	to	reflect	the	data	specificity	of	the	architecture,	nevertheless	it	
is	useful	to	maintain	a	holistic	view	on	the	domain	as	a	such.	

1.2.2 Microservice	architecture	

A	way	of	decomposing	IT	systems	into	loosely	coupled	parts	that	support	very	specific	business	
services	as	well	as	can	be	extended	and	scaled	independently	of	the	other	chunks.	Microservice	
architecture	allows	to	specialize	service	implementation	towards	defined	business	services	and	
optimize	its	design.	

Although	data	mesh	pattern	would	typically	benefit	from	usage	of	microservice	architecture,	it	
is	not	a	must	and	other	application	patterns	can	be	considered	and	still	work	well.	The	main	
issue	is	to	make	them	work	with	data	mesh.	

1.2.3 API	driven	integration	

Integration	pattern	that	connects	the	application	using	high	level	APIs	that	are	typically	
implemented	as	RESTful	services	using	http	protocol.	Quality	APIs	are	usually	self-descriptive,	
cover	a	specific	business	area	and	expose	it	as	a	service,	are	manageable	and	allow	for	loose	
couplings	between	the	applications/systems.	

In	fact	various	types	of	APIs	and	API	usage	can	be	imagined	for	data	mesh	(see	further)	and	best	
fit	for	purpose	should	always	be	used.	RESTFful	API	is,	however	one	of	one	of	the	most	versatile	
ways	of	communicating	with	the	data/service	platform.	

	 	

1.2.4 Resource	oriented	architecture	

Exposure	of	resources	rather	that	behavioral	APIs/services.	A	single	resource	(e.g.	current	
account)	exposes	all	the	allowed	operations	on	it	such	as	read,	modification,	creation	of	a	new	
one	etc.	Resource	is	typically	well	defined	and	implements	a	clear	and	relevant	business	term.	

Combination	of	the	above	mentioned	four	paradigms	allows	for	defining	and	creating	data	
domains,	supporting	them	with	properly	designed	and	implemented	microservices	as	well	as	
expose/consume	the	data	by	well	defined,	business	meaningful	services.	All	of	the	paradigms	
have	been	known	for	some	time	while	data	mesh	concept	is	just	a	glue	that	allows	them	to	
cooperate	to	provide	business	view	of	the	data.	

Obviously	other	choices	such	as	event	publishing	are	also	viable	and	can	be	implemented	
depending	on	the	needs	and	chosen	patterns.		

2. Data	mesh	vs.	data	warehouse	vs.	data	lake	

Data	mesh	is	a	functional	and	behavioral	paradigm	settling	data	consumers	in	the	center	of	the	
architecture.	It	can	be	implemented	in	several	ways	utilizing	various	concepts	for	organizing	
source	data	as	well	as	using	various	integration	and	enablement	patterns.	

Each	of	the	architecture	styles	mentioned	addresses	some	business	problems.	

Data	warehouses	have	been	here	for	many	years,	serving	mostly	as	structured	sources	of	
structural	(but	not	always	and	only)	data,	provider	of	the	data	for	reporting,	consolidating	
history,	sometimes	general	ledgers,	etc.	Their	premise	was	centralizing	the	data	to	one	source	of	
facts	about	the	organization.	

Data	lakes	have	been	brought	to	life	to	enable	capabilities	of	mass	processing,	storage	and	
categorization	of	the	unstructured,	high	volume,	velocity,	and	veracity	of	data.	If	the	data	
warehouse	pattern	was	typically	schema	at	write,	data	lake	is	schema	at	read—making	it	high	
volume	with	fast	availability,	but	using	lots	of	user’s	attention	and	awareness.	

Data	warehouses	and	lakes	are	often	combined.	A	“lake	house”	is	a	build	offering	the	capabilities	
of	both.	Although	seasoned,	they	are	not	obsolete.	

Data	mesh,	on	the	other	hand,	is	all	about	self-service,	and	decoupling	enterprise	data	
management	and	consumption	into	simpler	and	less	entangled	data	products.	Data	mesh	is	not	
a	direct	replacement	of	centralized	data	source	such	as	data	warehouse	or	data	lake.		

There	are	patterns	in	place	that	allow	seamless	collaboration	between	data	mesh	and	
centralized	data	stores	representing	a	single	source	of	facts.	In	such	a	case	data	mesh	would	
typically	be	produced	by	a	consolidated	storage	layer.	Moreover,	there	are	architectural	
patterns	and	data	models	that	allow	for	organization	of	single	source	of	facts	so	that	it	
automatically	organizes	the	data	into	domains	and	enables	easy	exposure	of	data	mesh	as	a	
prevalent	consumption	pattern.	There	are	three	types	of	domains:	

Source-oriented	domain	(source	domain):		

• Sourced	from	enterprise	core	applications	

• Facts	and	reality	of	business		

• Immutable	timed	events	/	Historical	snapshots		

• Change	less	frequently		

• Permanently	captured	

Consumer	oriented	domain	(consumer	domain):	

• Sourced	from	data	products	from	source-oriented	domain(s)	or	integration	domain(s)	

• Fit	for	consumer	purpose	

• Aggregation	/	Projection	/	Transformation		

• Change	often	

• Can	be	recreated		

Integration	domain:		

• Sourced	from	data	products	from	source-oriented	domain(s)	or	consumer	domain(s)	

• Integration	over	domains		

• Granularity	specific	to	consumer	domains	requirements	

• Change	specific	to	consumer	domains	requirements	

• Can	be	recreated	per	source	domain		

	

	 	

3. Ways	of	organizing	and	sourcing	distributed	data	mesh	

Distributed	data	mesh	is	not	a	fixed	pattern	that	can	be	implemented	in	one	canonical	way.	
There	are	at	least	two	dimensions	across	which	we	can	make	decisions	on	its	sourcing:	

• Ways	of	organizing	data	(schemas)	and	allocating/collocating	them	
• Ways	of	sourcing	the	data	for	distributed	data	mesh	domains	

3.1 Ways	of	organizing	schemas	for	the	distributed	data	mesh	

Federating	the	development	of	complex	data	products	does	not	automatically	imply	the	
federation	of	their	deployment.	In	fact,	a	spectrum	of	deployment	options	is	available	to	
organizations	deploying	data	mesh	solutions.	Different	strategies	are	associated	with	
fundamentally	different	engineering	trade-offs,	so	it	is	important	that	organizations	frame	these	
choices	correctly	and	are	intentional	about	their	decisions.	

In	general	terms,	there	are	three	different	strategies	for	deploying	schemas	within	a	data	mesh	
as	defined	by	the	vendors	such	as	Teradata:	

1. Isolation	
2. Co-location	
3. Connection	

These	are	not	mutually	exclusive,	and	many	real-world	implementations	use	a	combination	of	
these	approaches,	especially	in	large	data	estates.	

If	environments	such	as	Teradata	Vantage	are	used,	the	play	is	between	deployment	of	
centralized	image(s)	to	host	collocated	domains,	host	individual	domains	or	use	Vantage	as	a	
data	platform	gateway	to	virtualized	data	from	other	platforms.	

	

	

	 	

3.2 Ways	of	sourcing/building	the	data	mesh	

Among	several	patterns	to	build	data	mesh	three	deserve	a	closer	look	at	them:	

• Fully	independent	model	in	which	each	domain	is	sourced	independently	
• Centralized	sourcing	with	materialization	of	the	domain	
• Centralized	sourcing	with	virtualization	of	the	domain	

Of	course,	variations	mixing	the	model	can	and	certainly	will	be	built	and	used.	

	

Of	course,	the	models	can	be	combined	to	maximize	the	benefits	of	data	mesh.	The	condition	for	
successful	cohabitation	of	the	patterns	is	consistent	federated	governance	spanned	on	entire	
mesh.	

	
The	Teradata	Vantage	platform	can	be	used	as	a	technology	to	serve	any	data	
architecture	and	is	not	only	capable	of	implementing	each	of	these	3	models,	but	also	
works	in	its	various	parts	providing	sources,	serve	as	centralized	repository	as	well	as	
implement	domain	repositories	delivering	data	within	its	bounded	context.	

3.3 Fully	independent	model		

Each	of	the	domains	is	logically	separated	from	its	sourcing	to	consumption.	Still	the	
interoperability	is	satisfied	by	coherent	data	delivery	agreements.		

	

The	source	domain	exposes	data	products	to	the	downstream	domains	in	the	form	of	APIs,	
databases	and	streams	that	are	immutable	for	everything	outside	of	the	domain.	The	source	
domain	can	produce	other	data	products	too.	

	

Source	domains	and	consuming	domains	are	well	aligned,	for	example,	a	mortgage	system	
source	domain	and	mortgage	analyses	consuming	domain.	There	may	be	two	different	teams	
but	they’re	aligned	on	business	processes,	with	one	team	providing	data	in	a	consistent	manner,	
one	team	consuming	it.	

The	integration	domain	is	a	special	kind	of	consuming	domain.	It	is	less	aligned	with	just	one	
source	domain	but	is	generally	sourced	from	more	source	domains	then	consumer	domains	are.	

MORTGAGE
SYSTEMS

SOURCE
SYSTEMS

2

SOURCE
SYSTEMS

N

ETL SET
SOURCE DOMAIN

N

ETL SET
SOURCE DOMAIN

2

ETL SET
SOURCE DOMAIN

MORTGAGES
SOURCE DOMAIN

MODEL MORTGAGES

data products
context 1

SOURCE DOMAIN
MODEL 2

SOURCE DOMAIN
MODEL N

context 1 source
domain mortgages

context 2 source
domain mortgages

data products
context 2

data products
context 1

context 1 source
domain 2

context 1 source
domain N

context 2 source
domain N

context 3 source
domain N

data products
context 1

data products
context 2

data products
context 3

Source domain mortgages

Source domain 2

Source domain N

Data products &
Contexts Source

Domain Mortgages

Data products &
Contexts Source

Domain 2

Data products &
Contexts Source

Domain N

ETL SET
CONSUMER DOMAIN

N

ETL SET
CONSUMER DOMAIN

2

ETL SET
CONSUMER DOMAIN

MORTGAGES
SOURCE DOMAIN

MODEL MORTGAGES

data products
context 1

SOURCE DOMAIN
MODEL 2

CONSUMER DOMAIN
MODEL N

context 1 consumer
domain mortgages

context 2 consumer
domain mortgages

data products
context 2

data products
context 1

context 1 consumer
domain 2

context 1 consumer
domain N

context 2 consumer
domain N

context 3 consumer
domain N

data products
context 1

data products
context 2

data products
context 3

Consumer domain mortgages analyses

Consumer domain 2

Consumer domain N

	

3.4 Sourcing	from	the	central	data	platform	with	materialization	of	the	domain	

Domains	are	sourced	from	the	central	data	platform	and	domains	are	typically	materialized.	
Less	command	is	left	in	the	hands	of	data-product	team	allocated	in	the	domain.	The	central	
domain	platform	uses	the	data	lake	(nowadays	mostly	stored	on	native	objects	stores),	the	lake	
house	and	data	warehouse	patterns,	whichever	is	fit	for	purpose	to	store	data.	The	data	in	it	will	
be	aligned	on	a	domain	basis,	for	example	in	dedicated	buckets/accounts/schemas.	Domains	get	
a	slice	of	the	technology	stack.		

The	concepts	of	source-,	integration-	and	consumer	domains	are	not	strong	here;	however	it	is	
still	possible	for	domains	to	consume	data	products	directly	from	other	domains.	Integration	
domains	could	exist,	but	most	of	the	time	integration	is	done	on	the	central	data	platform.	
Creating	a	separate	integration	domain	must	be	done	using	good	common	sense.		

	

	

3.5 Sourcing	from	the	central	data	platform	with	virtualization	of	the	domain	

Domains	are	sourced	from	the	central	data	store	mainly	on	virtual	basis.	Amount	of	command	
and	control	in	data-product	team’s	hands	is	similar	to	the	previous	pattern.	Strong	
understanding	of	the	centralized	repository	is	needed.	What	goes	for	sourcing	from	the	central	
data	platform	with	materialization	of	the	domain	goes	for	this	way	of	sourcing	building	a	data	
mesh	too.	The	central	domain	platform	uses	the	data	lake	(nowadays	mostly	stored	on	native	
objects	stores),	the	lake	house	and	data	warehouse	patterns,	whichever	is	fit	for	purpose	to	
store	data.	The	data	in	it	will	be	aligned	on	a	domain	basis,	for	example	in	dedicated	
buckets/accounts/schemas.	Domains	get	a	slice	of	the	technology	stack.		

Virtualization	tooling	and/or	database	views	support	the	domain	model	and	its	contexts.	

The	concepts	of	source-,	integration-	and	consumer	domains	are	not	strong	here;	however	it	is	
still	possible	for	domains	to	consume	data	products	directly	from	other	domains.	Integration	

MORTGAGE
SYSTEMS

SOURCE
SYSTEMS

2

SOURCE
SYSTEMS

N

Central
Data

Platform

ETL SET
DOMAIN

MORTGAGES

data products
context 1

context 1
domain mortgages

context 2
domain mortgages

data products
context 2

DOMAIN
MODEL MORTGAGES

ETL SET
DOMAIN

2

data products
context 1

context 1
domain 2DOMAIN

MODEL 2

ETL SET
DOMAIN

N

data products
context 1

context 1
domain N

context 2
domain N

data products
context 2

DOMAIN
MODEL N

context 3
domain N

data products
context 3

Data products &
Contexts
Domains

domains	could	exist,	but	most	of	the	time	integration	is	done	on	the	central	data	platform.	
Creating	a	separate	integration	domain	must	be	done	using	good	common	sense.		

	

	

4. How	to	organize	the	service	landscape	to	implement	data	mesh	

Data	mesh	is	always	implemented	using	domain	driven	design.	Division	of	the	business	areas	
into	domains,	closing	common	functional	and	model	chunks	by	bounded	contexts	is	the	way	to	
enable	data	mesh.	Microservices	and	modern	integration/service	enablement	techniques	
usually	follow,	but	it	is	DDD	that	lays	the	foundation	for	construction	of	successful	data	mesh	
implementation.	

There	are	several	techniques	for	subdividing	business	capabilities	into	the	domains	as	well	as	
construction	of	thereof	(are	addressed	in	the	article	devoted	to	modern	architectures	delivery),	
however	it	is	easy	to	single	out	a	stereotype	of	the	data	domain.	

4.1 General	organization	of	architecture	layers	for	data	mesh	

The	data	domain	usually	consists	of	several	layers:	

• Deep	sources	or	operational	systems	that	provide	the	transactional/operational	data	
• Domain	data	repositories	–	typically	responsible	for	so	called	liberalization	of	the	data	
• (Micro)services	to	provide	the	main	functionalities	enabling	and	operating	the	data	
• Data	service	layer	serving	data	as	products.	

	 	

MORTGAGE
SYSTEMS

SOURCE
SYSTEMS

2

SOURCE
SYSTEMS

N

Central
Data

Platform

data products
context 1

context 1
domain mortgages

context 2
domain mortgages

data products
context 2

DOMAIN
MODEL MORTGAGES

data products
context 1

context 1
domain 2DOMAIN

MODEL 2

data products
context 1

context 1
domain N

context 2
domain N

data products
context 2

DOMAIN
MODEL N

context 3
domain N

data products
context 3

Data products &
Contexts
Domains

The	domain	can	contain	one	or	more	bounded	contexts.	The	contexts	usually	don’t	but	might	
overlap	with	other	domains	and	subdomains.		

In	the	properly	constructed	data	mesh	(and	DDD	governed	at	all)	solution	is	the	rule	that	only	
master	domain	can	change	its	data.	Subordinate	domains	cannot,	they	can	only	read	the	master	
domains	data.	Whenever	subordinate	domain	is	a	master	of	some	data	it	is	the	only	authority	to	
change	them.	

Also,	there	is	a	substantial	difference	between	the	notions	of	data	and	business	domains.	The	
first	one	is	a	provider	and	change	originator	for	the	data	and	data	products	and	can	potentially	
serve	business	domains	as	data	product	provider.	The	latter	one	is	usually	a	more	behavioral	
and	transactional	concepts	exposing	services	for	operations	on	the	business	processes	and	state	
of	business	objects	managed	by	organization.	Keeping	that	in	mind	one	can	notice	the	
patterns/styles	in	fact	complement	each	other.	

	

	

	

It	takes	a	very	business	and	technology	aware	team	to	properly	decompose	and	design	from	
business	services	to	implementation	to	properly	distributed	data	mesh.	Once	the	culture	and	
routine	are	there,	however,	adding	the	domains	or	decomposing	monoliths	into	the	domains	
gets	easier	and	easier.	

	

	 	

4.2 Types	of	APIs	used	for	data	mesh	

As	stated	in	the	earlier	part	of	the	document	API	driven	connectivity	is	one	of	the	most	logical	
choices	for	exposing	data	products.	We	consider	a	couple	popular	ways	to	technically	expose	
the	data—see	below.	

The	date	volume	exchanged	differentiates	the	use	of	particular	APIs	over	the	others.	Acquisition	
of	moderate	data	portions	makes	direct	APIs	advantageous	while	querying	mass	data	will	
always	favor	direct	connections	to	the	data	or	bulk	file	extracts.	Those,	however,	benefit	from	
being	initiated	and	controlled	by	API	calls.	

	

	

	

	 	

5. Ways	of	building	data	mesh	depend	on	the	scale	and	resources	in	hand	

Whenever	deciding	to	build	a	data	mesh	the	most	pragmatic	approach	needs	to	be	taken.	There	
is	a	list	of	factors	that	need	to	be	considered	ahead	of	deciding	how	to	implement:	

	

	

	

	 	

When	the	company	IT	department	has	sufficient	scale,	all	the	layers	can	be	built	or	set	up	in	
almost	every	possible	way,	including	building	from	the	scratch.	Most	companies	are,	however,	
constrained	by	the	budget,	resources,	and	learning	curve	needed	to	master	the	skills	to	prepare	
all	the	layers.	

In	case	supporting	ready	platforms	need	to	be	utilized	to	limit	the	overhead	needed	to	build	the	
solution,	the	following	areas	of	considerations	should	be	addressed:	

	

	

	

There	are	ready	platforms	for	each	of	the	areas	mentioned.	They	in	fact	limit	possibilities	
somehow	but	provide	a	quick	starting	point	and	platform	that	can	be	directly	used	to	build	and	
host	the	components	of	data	mesh.	

The	next	big	step	that	is	likely	to	emerge	or	even	already	on	the	horizon	is	data	mesh	as	a	
service	offering	from	significant	players.	Many	can	be	mentioned,	but	the	Teradata	Vantage	
platform	has	native	connections	to	sources	like	native	object	storage	and	using	Teradata	
QueryGrid.	This	can	be	extended	to	Apache	Hive	and	Apache	Spark,	Oracle	and	Google	BigQuery.	
The	Starburst	Presto	connector	makes	it	possible	to	further	extend	the	connection	to	a	myriad	
of	data	engines	through	Starburst	Presto.	This	makes	the	platform	a	ready-to-use	solution	
offering	a	data	mesh	skeleton	to	be	integrated,	filled	with	the	data	and	provisioned	on	the	cloud	
for	the	use	of	data	clients.	

	

	 	

6. Dos	and	don’ts	–	when	(not)	to	implement	data	mesh	architecture		
	

As	with	every	pattern,	there	are	some	limitations	and	caveats	that	need	to	be	taken	into	
consideration	whenever	used.	Below	is	a	list	of	major	points	to	consider:	

1. Do	not	treat	data	mesh	as	a	golden	hammer	to	solve	all	the	problems	with	data	
2. Do	not	seek	to	replace	of	your	data	warehouse	or	data	lake	with	data	mesh	if	they	

already	properly	fulfill	their	function—think	about	data	mesh	as	an	evolutionary	step	
3. If	a	data	mesh	style	is	planned	for	implementation,	changing	or	evolving	technology	and	

data	models	as	well	as	the	organization	of	federated	governance,	domain	decomposition	
and	strict	domain	ownership	is	important	

4. Do	not	start	with	technology—technology	is	an	enabler	but	objectives	come	from	
business	definitions	of	the	domains	

5. Leverage	modern	service	and	deployment	patterns	such	as	cloud,	data	virtualization,	
CI/CD	etc.	to	fully	explore	decomposed	and	additive	models	

7. Teradata	as	a	provider	of	core	technology	to	enable	data	mesh	architecture	

Teradata	has	been	around	for	more	than	40	years	now	providing	unparallel	capabilities	in	the	
processing	of	huge	amounts	of	data.	It	is	an	original	MPP	design	which	stems	from	its	shared	
nothing	architecture	that	has	resolved	problems	with	storing,	selecting	and	joining	huge,	large-
scale	data	sets.	Over	the	years	lots	of	capabilities	have	been	developed	around	Teradata:	

• Efficient	and	scalable	data	integration	tools	(via	Teradata	Parallel	Transporter,	part	of	
Teradata’s	Tools	and	Utilities	that	come	standard	with	Teradata	Vantage)	

• Best	in	class	workload	management	solution	(called	TASM)	that	allows	protecting	workloads	
of	various	types	(tactical,	strategical,	analytical,	etc)	and	making	it	possible	to	meet	your	
SLA’s	

• Scalable	on-prem,	hybrid-	and	multi	cloud	offering	(Vantage)	that	allows	to	scale	data	
processing	solutions	easily	to	adapt	to	varying	workload	(storage	and	computation	
intensity).	Teradata	has	a	‘cloud	first’	strategy	

• Heterogenous	data	integration	platform	allowing	to	combine	various	technologies	into	one	
data	ecosystem	managed	from	the	Teradata	Vantage	platform	

• Separated	storage	and	compute	which	makes	Teradata	Vantage	extremely	suitable	to	adapt	
cloud	capabilities,	like	scalability,	elasticity,	agility,	flexibility,	efficiency	in	resource	usage,	
etc.		

• Teradata	connectors	like	amongst	others	the	Teradata	Kafka	connector	which	makes	it	
possible	to	use	Kafka	to	stream	data	into	Vantage		

• Teradata	QueryGrid,	which	makes	it	possible	to	connect	Vantage	to	a	myriad	of	data	engines	
and	understand	the	statistics	in	those	data	engines.		This	way	Vantage	can	work	together	
with	those	engines	to	determine	the	best	path	to	your	data	and	thus	limiting	resource	usage.	

• Reading	and	writing	to	Native	Object	Stores	(NOS)	like	AWS	S3,	Azure	Blob	and	ADLS,	Google	
cloud	storage	or	on-prem	object	stores	that	use	the	AWS	S3	API.	Making	it	possible	to	use	
this	cheap	storage	for	archiving	or	event	store	purposes	

• A	“Bring	Your	Own	Model,”	making	it	possible	to	score	your	models	in	the	database,	bringing	
the	processing	to	the	data	instead	of	bringing	the	data	to	the	processing,	which	can	be	very	
expensive	in	the	cloud	

• Running	R,	Python	and	Java	in	the	database,	again	bringing	the	processing	to	the	data.	No	
need	to	move	your	data	to	your	R,	Python	or	Java	clients	anymore	

• A	robust	set	of	Teradata	Vantage	ecosystem	management	tools,	including	back	and	recovery,	
sandboxing,	moving	data,	Vantage	management	and	business	continuity	management	

• Teradata	Vantage	supports	the	data	mesh	concept	in	all	three	schema	deployment	strategies	
(Isolation,	Co-location	and	Connection)	 	

8. Outlook	for	the	future	

The	future	is	now,	as	numerous	communities	think	and	work	on	refinement	and	preparation	of	
the	new	patterns.	Below,	the	authors	allow	themselves	to	speculate	on	the	future	evolution	of	
the	data	mesh	style.	Some	of	the	anticipated	novelties	are	applicable	for	the	other	patterns	as	
well	and	as	such	will	probably	be	used	widely.	

	

	

	

The	main	predictions	concern	architecture/technology	and	organization/operations.	The	
changes	will	reciprocate	as	business	changes	create	new	requirements	while	advancements	in	
technology	and	architecture	enable	business	and	operations	advancements.	

8.1 Technology	

8.1.1 Data	mesh	and	service	mesh	will	converge	

Both	patterns	will	converge	as	data	mesh	will	more	frequently	support	transactional	and	
operational	activities,	while	analytic	data	will	more	often	be	enabled	via	services	defined	as	APIs	
or	similar.	

8.1.2 Middleware	will	support	data	mesh	

As	mentioned	in	the	previous	chapters,	the	enablement	teams	will	be	fuller	and	fuller	supported	
with	middleware	dedicated	or	including	data	mesh	pattern.	Service,	integrations	as	well	as	
provisioning	of	data	domains	will	become	more	and	more	codeless.	

8.1.3 Data	mesh	platforms	as	a	service	

Hyperscalers	and	traditional	analytic	repositories	providers	will	start	building	and	advertising	
data	mesh	platforms	offered	as	a	service.	A	similar	turn	of	events	led	to	productized	data	lakes	
or	lake	houses.	

8.1.4 Data	virtualization	as	enabler	for	data	mesh	

Data	mesh	as	a	pattern	is	a	natural	candidate	to	be	enabled	by	data	virtualization	tooling—for	
example	Teradata	QueryGrid.	They	typically	allow	for	rapid	microservice-style	deployment	of	
data	domains	or	domains	sets.	It	seems	logical	this	trend	will	prevail.	

8.1.5 Domain	Driven	Design	sophistication	

Domain	driven	design	is	a	great	enabler	for	data	mesh.	New	techniques	of	decomposing	
business	into	domains	as	well	as	designing	the	domain	will	gain	ground,	and	DDD	will	be	
automatically	linked	with	Data	Mesh	pattern	

8.1.6 AI/ML	will	get	embedded	into	data	mesh	

Prediction	relevant	for	both	data	mesh	and	lake	house	or	similar	patterns	assumes	AI	and	ML	
will	get	embedded	into	the	data	platform	to	properly	match	and	translate	between	business	and	
technical	semantics.	Ultimately,	it	would	enable	an	AI	supported	fetch	of	the	results	for	the	
queries	requested	in	business	language.	Also,	organization	of	the	data,	usage	of	semantic	graphs,	
self-organizing	structures,	and	database	management	will	find	its	application.	

8.2 Organization	and	operations	

Organizational	and	operational	changes	will	enable	development	of	architectural	standards	and	
patterns.	The	process	of	agile	methodologies	driven	convergence	of	the	roles	and	skillsets	will	
continue.	Analysts	and	data	scientists	will	acquire	technology	proficiency	while	IT	oriented	
individuals	will	be	gaining	more	awareness	and	excellence	in	usage	of	requirements	and	
business	process	analysis.	The	teams	are	and	will	continue	becoming	multidisciplinary,	typically	
organized	in	tribes	or	similar	structures.	Cooperation	between	topic/domain-oriented	groups	
should	remove	siloes	in	organizations,	which	is	the	main	prerequisite	for	federated	governance	
over	the	data	and	the	domains.	

9. Conclusions	

Data	Mesh	is	a	promising	but	already	widely	adopted	pattern	that	allows	overcoming	some	
significant	shortages	of	patterns	used	so	far.	It	moves	the	development	closer	to	the	owners	and	
users	of	the	data	while	retaining	their	overall	business	alignment	via	federated,	preferably	
computational,	governance.		

The	market	adopts	the	data	mesh	concept,	while	the	vendors	of	IT	solutions	and	service	
providers	develop	data	mesh	as	a	service	or	product.	

Data	Mesh	is	a	style	likely	to	coexist	and	integrate	with	patterns	used	so	far	such	as	data	lake	or	
lake	house.	It	is	also	typically	a	driver	of	organizational	and	operational	changes	in	large	
organizations,	leading	to	more	efficient	handling	and	processing	of	data.	

Teradata,	as	a	company	with	40	years	of	experience,	was	able	to	build	a	concept	and	products	
for	implementing	large	scale	data	mesh.	Teradata	Vantage	and	Teradata	QueryGrid	allow	to	
achieve	every	data	mesh	flavor.	

BCG	and	Teradata	partner	on	data	mesh	(and	other	patterns)	projects	shaping	and	delivering	to	
support	data	intensive	business	organizations.	

	

10. About	Teradata	

Teradata	is	the	connected	multi-cloud	data	platform	company.	Our	enterprise	analytics	solve	
business	challenges	from	start	to	scale.	Only	Teradata	gives	you	the	flexibility	to	handle	the	massive	
and	mixed	data	workloads	of	the	future,	today.	

The	Teradata	Vantage	architecture	is	cloud	native,	delivered	as-a-service,	and	built	on	an	open	
ecosystem.	These	design	features	make	Vantage	the	ideal	platform	to	optimize	price	performance	in	
a	multi-cloud	environment.	Learn	more	at	Teradata.com.	

	 	

11. About	the	authors	

	

	

	

	

	

Robbert	Naastepad	

Robbert	started	his	career	as	a	Cobol	programmer	on	the	IBM	MVS	operating	system	using	the	
IMS-DB/DC	database	management	system.	After	using	dBase	II/III/III+	and	Foxpro	got	
introduced	to	the	Oracle	6.1.7	RDBMS	in	1994.	

From	that	moment,	he	got	more	and	more	involved	in	executive	information	systems,	data	
warehousing	and	business	intelligence.	Robbert	has	evolved	from	developer	and	analyst	in	
several	projects,	to	technical	architect	at	Oracle	into	an	enterprise	data,	BI	and	analytics	
architect	at	Teradata.	He	has	been	a	Teradata	team	member	since	January	2017,	as	he	felt	
Teradata	had	the	right	business	strategy	and	products	to	support	that	strategy	to	be	a	leading	
company	in	data	management	for	business	intelligence	and	analytics.	Now	Robbert	supports	
customers	and	partners	of	Teradata	developing	and	implementing	data	architectures	using	the	
Teradata	Vantage	data	platform.	

	

	

	

	

	

Jakub	Fila	

Jakub	started	as	an	aerospace	engineer	in	the	turbine	engine	industry	and	then	the	nuclear	
industry.	He	is	a	graduate	of	the	Aerospace	Engineering	and	Physics	faculties	where	he	also	
learned	software	engineering	and	started	his	interest	in	data	processing	and	parallel	
programming.		

He	has	been	working	as	an	IT	architect	on	various	levels	of	seniority	for	companies	like	
Accenture,	IBM	or	Teradata.	Currently,	Jakub	is	a	Principal	at	BCG	Platinion,	helping	clients	to	
make	strategic	decisions	and	implementing	right	technologies	to	fulfill	the	strategy.	He	
specializes	in	integration	architecture,	enterprise	architecture,	massive	data	processing	and	
software	engineering.	He	is	an	enthusiast	of	MPP	platforms	and	efficient	parallel	programming	
techniques	and	leads	the	Application	Architecture	chapter	in	BCG	EMESA	region.	Privately,	
Jakub	is	keen	on	aerospace	and	triathlon.	

	 	

	

	

	

	

	

Jens	Mueller	

Jens	is	with	his	whole	heart	an	engineer.	He	started	coding	J2EE	solutions	in	financial	industries	
and	evolved	into	a	domain/enterprise	architect	over	the	years	via	performance	measurement	
and	optimization	cases	which	helped	build	a	thorough	understanding	of	traditional	relational	
DBMS	and	their	inner	workings	(Oracle	and	DB2).		

Moving	on	to	strategic	IT	consulting	in	2006,	he	explored	all	aspects	of	IT	management.	The	
path	to	data	platforms	was	laid	out	pilot	cases	on	SAS	around	2010	and	then	from	2012	on	
taking	over	the	role	of	head	of	design	authority	capital	markets	in	a	large	German	bank.	There	
he	substantially	helped	setting	up	a	data	hub	based	on	data	lake	and	streaming	technologies	
that	was	later	moved	to	a	cloud	native	setup.	After	re-joining	BCG	Platinion	in	2019,	Jens	took	
over	the	data	architecture	chapter	to	extend	our	competences	further	and	work	on	(cloud)	data	
platform	cases	in	financial	industries.	

	

	

	

	

	

Vincent	von	Hof	

Vincent	is	a	senior	IT	architect	at	BCG	and	engineer	by	his	background	and	in	his	heart.	Vincent	
is	one	key	members	of	BCG	Data	Chapter.	

Vincent	started	his	career	as	a	software	developer	focused	on	Java	and	C#,	solving	data	
challenges	in	the	middleware	and	backend	for	large	scale	data	processing	and	creating	data	
ontologies	for	the	German	government,	as	well	as	working	on	solving	data	challenges	on	the	
opposite	scale	in	constrained	environments	on	Android,	where	he	led	a	development	team	at	a	
startup	for	multiple	years.	He	holds	Ph.D.	in	software	engineering	majoring	in	automated	test	
case	generation.	With	10+	years	of	development	experience	he	joined	BCG	as	an	architect.

His	main	interests	include	massive	data	processing,	software	engineering,	test	automation	and	
cloud	architecture.	Vincent	typically	leads	large	data	management	projects	delivering	content,	
architecture	concepts,	implementing	and	aligning	business	with	IT.		

	 	

	

